Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore.

نویسندگان

  • T Thanabalu
  • E Koronakis
  • C Hughes
  • V Koronakis
چکیده

The toxin HlyA is exported from Escherichia coli, without a periplasmic intermediate, by a type I system comprising an energized inner-membrane (IM) translocase of two proteins, HlyD and the traffic ATPase HlyB, and the outer-membrane (OM) porin-like TolC. These and the toxin substrate were expressed separately to reconstitute export and, via affinity tags on the IM proteins, cross-linked in vivo complexes were isolated before and after substrate engagement. HlyD and HlyB assembled a stable IM complex in the absence of TolC and substrate. Both engaged HlyA, inducing the IM complex to contact TolC, concomitant with conformational change in all three exporter components. The IM-OM bridge was formed primarily by HlyD, which assembled to stable IM trimers, corresponding to the OM trimers of TolC. The bridge was transient, components reverting to IM and OM states after translocation. Mutant HlyB that bound, but did not hydrolyse ATP, supported IM complex assembly, substrate recruitment and bridging, but HlyA stalled in the channel. A similar picture was evident when the HlyD C-terminus was masked. Export thus occurs via a contiguous channel which is formed, without traffic ATPase ATP hydrolysis, by substrate-induced, reversible bridging of the IM translocase to the OM export pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps.

Bacteria such as Escherichia coli and Pseudomonas aeruginosa expel antibiotics and other inhibitors via tripartite multidrug efflux pumps spanning the inner and outer membranes and the intervening periplasmic space. A key event in pump assembly is the recruitment of an outer membrane-anchored TolC exit duct by the adaptor protein of a cognate inner membrane translocase, establishing a contiguou...

متن کامل

The mitochondrial permeability transition pore.

This chapter reviews recent advances in the identification of the structural elements of the permeability transition pore. The discovery that cyclosporin A (CsA) inhibits the pore proved instrumental. Various approaches indicate that CsA blocks the pore by binding to cyclophilin (CyP)-D. In particular, covalent labelling of CyP-D in situ by a photoactive CsA derivative has shown that pore ligan...

متن کامل

The channel-forming Sym1 protein is transported by the TIM23 complex in a presequence-independent manner.

The majority of multispanning inner mitochondrial membrane proteins utilize internal targeting signals, which direct them to the carrier translocase (TIM22 complex), for their import. MPV17 and its Saccharomyces cerevisiae orthologue Sym1 are multispanning inner membrane proteins of unknown function with an amino-terminal presequence that suggests they may be targeted to the mitochondria. Mutat...

متن کامل

Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 22  شماره 

صفحات  -

تاریخ انتشار 1998